Webinar Training Series

A Flood Mitigation Project Success Story

July 15, 2021 | 10:30 a.m. – 11:30 a.m. (Eastern)

Thanks to Our Sponsors!

Today's Presenter

Adrian Ward, PE, CFM, CPESC Vice President, Barge Design Solutions adrian.ward@bargedesign.com

Flood Mitigation Design Success Stories

July 15, 2021

Adrian Ward, PE

Engineering Manager

- Background
- Project Overviews
- Construction Photos
- Lessons Learned

2014 U.S. Housing and Urban Development released \$1 Billion in grant funding through a National Resiliency Competition.

Projects were required to

Provide flood reduction

Benefit low-to-moderate income population

Support the economy and environment

State of Tennessee was awarded \$44 million for multiple projects

West TN River Basin Authority – Interagency Grantee

Barge was awarded three projects:

- Tiptonville Pump Station
- Jackson Flood Control
- Cold Creek Chute

Tiptonville Pump Station Project Location

Existing Structure

At-Risk Structures

Current Plan

Current Plan

Proposed Solution

Pump Size Design Criteria

DETERMINE INFLOWS FOR VARIOUS RETURN EVENTS

Combined Mississippi River frequency event

X

Land side frequency event

>=

100-year event

DESIGN

100-year Mississippi event

10-year Land Side Rainfall

Traditional Methodology

- Time of Concentration
- Shallow
- Sheet
- Channel
- Synthetic Unit Hydrograph

Traditional Methodology Inflow

USGS Rural Regression Equations

10 YEAR

 $Q_{10} = 735 \times (Drainage Area)^{0.554}$

 $Q_{10} = 828 \text{ cfs (TR-55}_{10} = 820 \text{ cfs)}$

100 YEAR

 $Q_{100} = 1,080 \text{ x (Drainage Area)}^{0.575}$

 $Q_{100} = 1,220 \text{ cfs}$ (TR-55₁₀₀ = 1,420 cfs)

ONLY INPUTS INCLUDE

LiDAR

Excess Rainfall

Land Use Data

Less subjective (deterministic)

Combined hydrologic/ hydraulic model

Input pump curves

2D Model Domain

100 Year Inflow Comparison

10 Year Inflow Comparison

Chosen Concept

Jackson Flood Control Project Location

HISTORIC FLOODING PROBLEMS | SANDY, EROSIVE SOILS

Exposed utilities

Exposed utilities

Vertical slopes/deposition of sediment

JACKSON

		2 year	100-year
	Anderson	557.78	2074.63
★	Hicksville	369.72	1764.82
	Overhill	34.76	214.21
	Parkway	88.82	397.77
	Sportsplex	165.34	533.27
	Highlands	24.45	96.47
	Tiger Jones	85.45	392.67
	Westwood Gardens	625.66	2209.44

Existing Topography

Existing Topography

Existing Topography

JACKSON FLOOD CONTROL PROJECTS

- 1. Lift existing channels
- 2. Provide low flow channels and floodplain
- 3. Stabilize utility crossings where possible
- 4. Remove kudzu

Grade Control

Grade Control

TIPTONVILLE PUMP STATION – PUMP STATION

TIPTONVILLE PUMP STATION – GENERATOR/CONTROLS

WESTWOOD GARDENS - GRADE CONTROL

PARKWAY – GRADE CONTROL

HIGHLANDS – GRADE CONTROL

Estimate Costs Carefully

- Prepare as detailed as possible
- Use appropriate contingencies
- Involve subject matter specialists
- Account for construction conditions (wet, unsuitable soils, etc.)

Permitting

- Identify environmental constraints early
- Have a plan to mitigate/deal with impacts
- Get buy-in from regulators if possible

Experienced Leadership Team

- Capable project manager
- Multidisciplinary team to provide technical support
- Experienced grant administrator

Thank You!

July 15, 2021

Adrian Ward, PE

Engineering Manager

