

Regulatory Framework USEPA Region 4

SESWA Annual Stormwater Seminar March 31, 2017

Jeff Herr, P.E., D.WRE

Regulatory Framework - Federal

NPDES MS4 Requirements Minimum Control Measures (MCMs)

- Public Education and Outreach
- Public Involvement and Participation
- Illicit Discharge Detection and Elimination
- Construction Site Storm Water Runoff Control
- Post-Construction Storm Water Management in New Development and Redevelopment
- Pollution Prevention/Good Housekeeping for Municipal Operations Maintenance

Urban Stormwater Management in the United States by NRC (2008)

- EPA's current approach is unlikely to identify problem areas nor control waterbody impairment
- Flow and impervious cover should be considered a proxy for pollutant loading
- More vigilant regulatory oversight for products that pollute stormwater (i.e. deicing chemicals, brake linings)
- Federal government should provide financial support to states and local governments

NRC Recommended Stormwater Management Approaches

- Individual controls inadequate; need system of structural and non-structural controls (treatment train approach)
- Non-structural volume reduction techniques, such as better site design, should be used first to reduce volume and load from new development
- Implement techniques that harvest, infiltrate and evapotranspirate to reduce runoff volume from small storms
- Additional research on performance efficiencies is needed
- Retrofitting urban areas
- Base all wastewater and stormwater permits on watershed not political boundaries

Treatment Train - Implementing Cost Effective BMPs For Non-Point Source Management

MAXIMIZE

Runoff & Load Generation

Additional Treatment & Attenuation

Final Treatment and

Attenuation

MINIMIZE

Regulations
Public education
Erosion control
Roof runoff
Disconnect IA

Landscaping
Pervious paving
Pavement cleaning

GI

Swales
Catch Basins
Inlets filters
Oil/water separators

Trash/sediment traps

Detention
Wetland
Storage
Sediment sump

Retention

Detention

Wetland

Chemical

Ozone

UV

Reuse

End of pipe

Comparison of BMP Treatment Efficiencies for Primary Pollutants

Type of BMP	Estimated Removal Efficiencies (% Load Reduction)			
	TN	TP	TSS	BOD
INFILTRATION/REUSE Volume Reduction 1.00" VOLUME 1.50" VOLUME	80 90	80 90	80 90	80 90
WET DET (14-21 day WSRT)	25-35	60-70	90	50-70
WET DET/FILTER	0-10	50	85	70
DRY DETENTION	10-20	20-40	20-60	20-50
DRY DET/FILTER	(-)-20	(-)-20	40-60	0-50
CHEMICAL TREATMENT	20-40	80-90	>90	30-60
WETLAND TREATMENT	(-)-90	(-)-90	50-90	(-)-50

Volume Reduction

No volume = no load Also reduces conveyance requirements and cost.

Disconnect Impervious Areas

Rainwater Harvesting and Reuse

Stormwater Storage and Reuse

Low Impact Development and Infiltration Practices

Development Impacts Streams and Estuaries

STREAMFLOW

Valuable Freshwater Resource Is Lost to Tide

Regulatory Framework - Federal

- Indefinite hold on National Stormwater Rule:
 - Incentives
 - Technical assistance
 - Tools to implement strong stormwater programs
 - Leverage existing requirements to strengthen municipal stormwater permits
 - Continue to promote green infrastructure as an integral part of stormwater management
- US EPA continues to promote TMDL compliance and green infrastructure; requirements vary with state

TMDL Process

USEPA Region 4 Approved TMDLs by State

State Name	Number of TMDLs
<u>Alabama</u>	<u>305</u>
<u>Florida</u>	<u>2,246</u>
<u>Georgia</u>	<u>1,700</u>
<u>Kentucky</u>	<u>345</u>
Mississippi	<u>1,440</u>
North Carolina	<u>13,443</u>
South Carolina	<u>524</u>
<u>Tennessee</u>	<u>1,276</u>

Total: 21,279 TMDLs

USEPA Region 4 Approved TMDLs

Pollutant Group	Number of TMDLs
Mercury	<u>14,474</u>
Pathogens	<u>2,915</u>
Nutrients	<u>1,267</u>
Sediment	<u>1,057</u>
Organic Enrichment/Oxygen Depletion	<u>642</u>
Pesticides	<u>335</u>
Metals (other than Mercury)	<u>122</u>

Current Status of State-wide Numeric Nutrient Criteria

- Very few states have state-wide numeric nutrient criteria
- Most criteria are narrative "cannot cause an imbalance of flora and fauna"
- South Carolina phosphorus; adopted EPA Ecoregion values in 2001 (only state)
- Florida phosphorus and nitrogen for freshwaters and estuaries

Most states currently have narrative nutrient criteria. Numeric nutrient criteria typically significantly increase the number of impaired waters.

Florida's Lake Nutrient Criteria

LongTerm	Annual	Minimum calculated		Maximum calculated	
Geometric	Geometric	numericinterpretation		numeric interpretation	
Mean Lake	Mean	Annual	Annual	Annual	Annual
Colorand	Chlorophyll a	Geometric	Geometric	Geometric	Geometric
Alkalinity		Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
>40 Platinum					
Cobalt Units	20 μg/L	0.05 mg/L	1.27 mg/L	0.16 mg/L1	2.23 mg/L
≤40 Platinum					
Cobalt Units	20 μg/L	0.03 mg/L	1.05 mg/L	0.09 mg/L	1.91 mg/L
and > 20 mg/L					
CaCO ₃					
≤40 Platinum					
Cobalt Units	6 μg/L	0.01 mg/L	0.51 mg/L	0.03 mg/L	0.93 mg/L
and≤20 mg/L					
CaCO ₃					

¹ For lakes with color > 40 PCU in the West Central Nutrient Watershed Region, the maximum TP limit is 0.49 mg/L, which is the TP streams threshold for the region.

Allowable TP and TN concentration to achieve chlorophyll a standard.

Florida's In-Stream Nutrient Criteria

Annual geometric mean not to be surpassed more than once every 3 years.

Nutrient Region	Total Phosphorus Threshold	Total Nitrogen Threshold
Panhandle West	0.06 mg/L	0.67 mg/L
Panhandle East	0.18 mg/L	1.03 mg/L
North Central	0.30 mg/L	1.87 mg/L
Peninsula	0.12 mg/L	1.54 mg/L
West Central	0.49 mg/L	1.65 mg/L
South Florida	No numeric nutrient threshold. The narrative criterion in paragraph 62-302.530(47)(b), F.A.C., applies. ²	

Rule includes Site Specific
Alternative Criteria (SSAC) and mixing
zones. Cannot have mixing zone in
Impaired Water. Sound science.

USEPA Promoting Integrated Stormwater and Wastewater Planning

- Status memo to EPA Regions January 2013
- Combine analysis of watershed wastewater and stormwater impacts and solutions
- Address most serious water quality issues first
- Find most cost effective/beneficial solutions
- Use Green Infrastructure Sustainability
- Driven by local governments early adopters Baltimore, Seattle, Columbus OH

One Water Concept

Up to 60% of our water use does not require potable water

