

Stormwater Hydrology, Pollutant Sources, and Removal Mechanisms

Jeff Herr, P.E., D.WRE

Global Water Perspective

- Freshwater accounts for less than 3% of the total water on the earth
- Groundwater accounts for ~ 0.7% of the earth's freshwater
- < 0.1% of the freshwater on the earth is in surface waters</p>

Water Resources

- SE states receive 34 to 57 inches of rainfall each year
- Rainfall volume is >>> water demand
- Much of our rainfall becomes runoff and is lost to tide
- Stormwater runoff is naturally self-sustaining; pending major changes from climate change it will continue to rain

Brown and Caldwell

Hydrology: Most rainfall events are 1-inch or less Manage common rain events for WQ improvement

Rainfall Event Range (inches)	Mean Rainfall Depth (inches)	Mean Rainfall Duration (hours)	Fraction of Annual Rain Events	Number of Annual Events in Range
0.00-0.10	0.041	1.203	0.427	56.683
0.11-0.20	0.152	2.393	0.142	18.866
0.21-0.30	0.252	3.073	0.080	10.590
0.31-0.40	0.353	3.371	0.055	7.312
0.41-0.50	0.456	3.702	0.048	6.325
0.51-1.00	0.713	4.379	0.129	17.102 (117)
1.01-1.50	1.221	5.758	0.051	6.733
1.51-2.0	1.726	7.852	0.024	3.145
2.01-2.50	2.271	8.090	0.011	1.470
2.51-3.00	2.704	10.675	0.006	0.726
3.01-3.50	3.246	9.978	0.003	0.391
3.51-4.00	3.667	13.362	0.002	0.260
4.01-4.50	4.216	15.638	0.001	0.149
4.51-5.00	4.796	17.482	0.000	0.056
5.01-6.00	5.454	23.303	0.001	0.167
6.01-7.00	6.470	40.500	0.000	0.019
7.01-8.00	7.900	31.500	0.000	0.019
8.01-9.00	8.190	3.500	0.000	0.019
Caldwell>9.00	10.675	46.250	0.001	0.075

Minimal runoff from pervious areas and N-DCIA Even in HSG 'D' soils – DCIA is the driver

Runoff depth for curve number of—													
Rainfall	40	45	50	55	60	65	70	75	80	85	90	95	98
							inches						
1.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.08	0.17	0.32	0.56	0.79
1.2	.00	.00	.00	.00	.00	.00	.03	.07	.15	.27	.46	.74	.99
1.4	.00	.00	.00	.00	.00	.02	.06	.13	.24	.39	.61	.92	1.18
1.6	.00	.00	.00	.00	.01	.05	.11	.20	.34	.52	.76	1.11	1.38
1.8	.00	.00	.00	.00	.03	.09	.17	.29	.44	.65	.93	1.29	1.58
2.0	.00	.00	.00	.02	.06	.14	.24	.38	.56	.80	1.09	1.48	1.77
2.5	.00	.00	.02	.08	.17	.30	.46	.65	.89	1.18	1.53	1.96	2.27
3.0	.00	.02	.09	.19	.33	.51	.71	.96	1.25	1.59	1.98	2.45	2.77

Brown and Caldwell

Which Pollutants? Which Forms?

- Sediment
- Biochemical oxygen demand
- Pathogens
- Phosphorus: SRP, OP, TP
- Nitrogen: TKN = Org N + NH3; NOX = NO2 + NO3
 TN = TKN + NOX
 (Only some forms of nutrients are bioavailable)
- Metals
- Toxic compounds

Organic or inorganic, dissolved or particulate

Brown and Caldwell

Stormwater Pollutant Sources

POLLUTANT	PRIMARY SOURCES
Particulates	Soil erosion, sedimentation, pavement wear, atmosphere-fossil fuels, maintenance
Nutrients – N and P	Fossil fuels, fertilizer application, pets, septic tanks, sewer spills, wastewater reuse, soil erosion
Zinc	Tire wear, motor oil, grease
Copper	Metal plating, bearing and bushing wear, moving engine parts, brake lining wear, fungicides and insecticides
Cadmium	Tire wear, insecticides
Chromium	Metal plating, moving engine parts, brake linings
Nickel	Diesel fuel and gasoline, lubricating oils, metal plating, bushing wear, brake linings, asphalt
Petroleum	Spills, leaks or blow-by of motor lubricants, antifreeze and hydraulic fluids, asphalt
Pathogens	Birds, animal waste, septic tanks, sewer spills
Synthetic organics	Industrial processes, pesticides, insecticides, spills, asphalt

Some pollutants are visible and others are not.

Brown and Caldwell

Personal Pollution- Gross Pollutants, BOD

Organic Debris - TSS, N, P, BOD

Construction Erosion Sediment, Turbidity, P

Combustion of Fossil Fuels N, metals

Vehicles – particulates, metals, oils and greases

Sanitary Sewer Overflows N, P, BOD, Pathogens

Wastewater Reuse N, P, BOD

Natural Systems – Sediment release of N, P; Wildlife - Pathogens, N, P, BOD

In-Stream Erosion TSS, Turbidity, P

Common Stormwater Pollutants

- Gross solids (trash, debris, organic material)
- aesthetics, reduces conveyance, nutrient source
- Sediments reduces conveyance, contains all pollutants
- Oxygen demanding substances (BOD, COD)
 - reduces DO, impacts aquatic life, fish kills
- Nutrients (nitrogen and phosphorus)
 - eutrophication, oxygen demand
- Pathogens (bacteria and viruses)
 - impacts wildlife, aquatic life, human illnesses
- Heavy metals toxic to wildlife, aquatic life, humans (lead, zinc, cadmium, chromium, copper, nickel)
- Oil & grease, hydrocarbons
 - toxic to wildlife, aquatic life, humans

Less Common Pollutants (all highly toxic)

- Insecticides/Pesticides
- Radioactive materials
- Solvents
- Other hazardous chemicals

Sources Of Urban Stormwater Pollutants

POLLUTANT	PRIMARY SOURCES
Particulates	Erosion, sedimentation, pavement wear, atmosphere-fossil fuels, maintenance
Nutrients – N and P	Atmosphere-fossil fuels, fertilizer application, pets, septic tanks, sewer spills
Lead	Leaded gas, tire wear, lubricants
Zinc	Tire wear, motor oil, grease
Copper	Metal plating, bearing and bushing wear, moving engine parts, brake lining wear, fungicides and insecticides
Cadmium	Tire wear, insecticides
Chromium	Metal plating, moving engine parts, brake linings
Nickel	Diesel fuel and gasoline, lubricating oils, metal plating, bushing wear, brake linings, asphalt
Petroleum	Spills, leaks or blow-by of motor lubricants, antifreeze and hydraulic fluids, asphalt
Pathogens	Birds, animal waste, septic tanks, sewer spills
Synthetic organics	Industrial processes, pesticides, insecticides, spills, asphalt

SUMMARY OF LITERATURE-BASED RUNOFF CHARACTERIZATION DATA FOR GENERAL LAND USE CATEGORIES IN FLORIDA

LAND USE	TYPICAL RUNOFF CONCENTRATION (mg/l)								
CATEGORY	TOTAL N	TOTAL P	BOD	TSS	COPPER	LEAD	ZINC		
Low-Density Residential ¹	1.61	0.191	4.7	23.0	0.0084	0.0024	0.0314		
Single-Family	2.07	0.327	7.9	37.5	0.016	0.004	0.062		
Multi-Family	2.32	0.520	11.3	77.8	0.009	0.006	0.086		
Low-Intensity Commercial	1.18	0.179	7.7	57.5	0.018	0.005	0.094		
High-Intensity Commercial	2.40	0.345	11.3	69.7	0.015		0.160		
Light Industrial	1.20	0.260	7.6	60.0	0.003	0.002	0.057		
Highway	1.64	0.220	5.2	37.3	0.032	0.011	0.126		
Agricultural									
Pasture	3.47	0.616	5.1	94.3					
Citrus	2.24	0.183	2.55	15.5	0.003	0.001	0.012		
Row Crops	2.65	0.593		19.8	0.022	0.004	0.030		
General Agriculture ²	2.79	0.431	3.8	43.2	0.013	0.003	0.021		
Undeveloped / Rangeland / Forest	1.15	0.055	1.4	8.4					
Mining / Extractive	1.18	0.15	7.6^{3}	60.0 ³	0.003 ³	0.002^3	0.057 ³		

- 1. Average of single-family and undeveloped loading rates
- 2. Mean of pasture, citrus, and row crop land uses
- 3. Runoff concentrations assumed equal to industrial values for these parameters
- 4. Value assumed to be equal to 50% of single-family concentration

SUMMARY OF CALCULATED AREAL POLLUTANT LOADING RATES FOR CENTRAL AND SOUTH FLORIDA

Development significantly increases pollutant loadings

I AND HEE	AREAL LOADING RATE (kg/ac-yr)										
LAND USE CATEGORY	TOTAL N	ORTHO-P	TOTAL P	BOD	TSS	TOTAL Zn	TOTAL Pb				
Low Density Residential	2.88	0.169	0.320	7.63	31.9	0.06	0.052				
Single-Family	4.68	0.335	0.594	14.3	56.1	0.122	0.083				
Multi Family	8.51	0.924	1.72	38.4	256	0.188	0.299				
Low-Intensity Commercial	5.18	0.157	0.650	36.1	343	0.511	0.635				
High Intensity Commercial	13.0	1.52	1.96	79.3	435	0.782	0.985				
Industrial	7.30	0.519	1.24	39,5	383	0.543	0.872				
Highway	6.69	0.361	1.32	21.9	182	0.508	0,727				
Ag – Pasture	4.54	0.732	0.876	7.99	126						
Ag - Citrus	2.91	0.123	0.197	3.60	21.9						
Ag - Row Crops	2.84	0.421	0.595	1							
General Ag	3.62	0.380	0.551	5,80	74.0						
Undeveloped	1.07	0.003	0.046	0.96	7.60	0.005	0,021				
Mining	2.21	0.131	0.281	18.0	176	0.229	0.378				
Wetland	1.81	0.204	0,222	4.96	11.2	0.009	0.039				
Open Water	3.23	0.130	0.273	4.02	8.05	0.073	0.065				

SOURCE: HARPER 1994

Statistical Evaluation of Data Probability Plots – Phosphorus Species

Normal Probability Distribution

Log-Normal Probability Distribution

Statistical Evaluation of Data Probability Plots – Fecal, Turbidity & TSS

Normal Probability Distribution

Log-Normal Probability Distribution

Statistical Evaluation of Data Probability Plots – Fecal, Turbidity & TSS

Normal Probability Distribution

Log-Normal Probability Distribution

Stormwater pollutant concentrations are highly variable even at the same site

Total Phosphorus

Stormwater pollutant concentrations are highly variable even at the same site

Fecal Coliform Variability

Fecal coliform ranged from 10 to >10,000 within 24-hour period. Source: BC 2007

Potential Pathogens in Stormwater

- •Bacteria: campylobacter, salmonella, E. Coli, Shigella
- Viruses: cryptosporidia, giardia
- Parasites: cercarial dermatitis (swimmer's itch)

MST Results – All Stations, All Rounds Combined

Stormwater Pollutant Removal Mechanisms

	MECHANISM	POLLUTANTS AFFECTED
	Sedimentation	Solids, BOD, COD, P, N, metals pathogens, synthetic organics
	Filtration	Same as sedimentation
	Soil incorporation Chemical ppt. Adsorption	All Particulates, P, Dissolved P, metals, pathogens Dissolved P, metals, syn. organics
	Ion Exchange Oxidation	Dissolved metals COD, BOD, petroleum hydrocarbons (PHs), synthetic organics, pathogens
	Photolysis Volatilization	Same as oxidation Volatile PHs, syn. organics
	Microbial Decomposition	BOD, COD, PHs, syn. organics
	Plant uptake Natural die-off Nitrification	N, P, metals Pathogens NH ₃ -N, organic N
Prown and Caldwall	Denitrification	$NO_3 + NO_2$

Relative Comparison of Structural BMP Pollutant Removal Effectiveness

POLLUTANT	INFILTRATION/ VOLUME REDUCTION	DETENTION	WETLAND	CHEMICAL COAGULATION	FILTRATION/ UV	FILTRATION/ OZONE	LIQUID/SOLIDS SEPARATION STUCTURE
Nitrogen	H - VH	L - M	L – H	L - M	L - M	L - M	L
Phosphorus	H - VH	L - M	L – H	H - VH	L - M	L - M	L
TSS	H - VH	Н	Н	H - VH	H - VH	H -VH	L – M
BOD	H - VH	L - IVI	М	М	M – H	М – Н	L – M
Heavy Metals	H - VH	L - M	М - Н	M - H	L - M	L – M	L – M
Pathogens	H - VH	L	L	H - VH	VH	VH	L
Gross Solids	H - VH	н	н	L-H	VH	VH	H-VH

^{1.} Highly dependent on influent pollutant concentration and hydraulic loading rate

VH - Very High H - High M - Medium L- Low

End of Pipe Stormwater Treatment

- Typically for gross solids and sediment removal but new medias effective for removing other pollutants
- Used extensively for removal of primary pollutants
- Minimal land required
- Relatively inexpensive
- Can be implemented relatively quickly

Baffle Box CDS Unit Vortechnics Stormceptor Many others

Comparison of BMP Treatment Efficiencies for Primary Pollutants

Type of BMP	Estimated Removal Efficiencies (% Load Reduction)							
	TN	TN TP TS		BOD				
INFILTRATION/REUSE Volume Reduction 1.00" VOLUME 1.50" VOLUME	80 90	80 90	80 90	80 90				
WET DET (14-21 day WSRT)	25-35	60-70	90	50-70				
WET DET/FILTER	0-10	50	85	70				
DRY DETENTION	10-20	20-40	20-60	20-50				
DRY DET/FILTER	(-)-20	(-)-20	40-60	0-50				
CHEMICAL TREATMENT	20-40	80-90	>90	30-60				
WETLAND TREATMENT	(-)-90	(-)-90	50-90	(-)-50				

Brown and Caldwell

Volume Reduction

No volume = no load Also reduces conveyance requirements and cost.

<u>Disconnect Impervious Areas</u>

Rainwater Harvesting and Reuse

Stormwater Storage and Reuse

Low Impact Development
and Infiltration Practices
(permeability of native soils critical)

Brown and Caldwell

Thank you!

