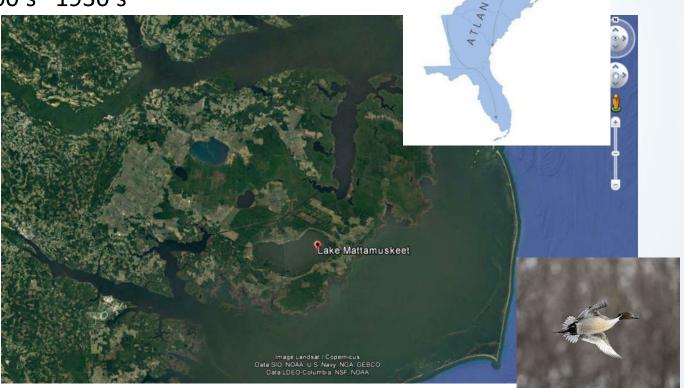


Lake Mattamuskeet Watershed Restoration Plan: Design of Constructed Stormwater Wetlands


Alessa Braswell, PhD, PE, Geosyntec Consultants of NC, P.C.
Jonathan Hinkle, PE, Bolton and Menk

Introduction to Lake Mattamuskeet

- North Carolina's largest lake (40,000 acres; once 110,000 ac)
- Low relief: max 9 ft MSL in watershed
- Extensive hydrologic modifications (ditches/drains in area)
- 4 major canals cut to drain lake from 1800's –1930's
- Value of the lake

Lake Mattamuskeet Watershed Restoration Plan

Present-Day Concerns for the Lake

- Lake not actively managed gravity/tide gate-controlled canal drainage system limited by encroaching sea levels
- Chronic flooding in residential and agricultural areas
- Oligotrophic, sandy bottom → hyper-eutrophic, silty bottom
- Flora transition: submerged aquatic vegetation
 algae
 - Decreased light penetration, increased sedimentation and nutrients
 - Cyanobacteria
- Faunal changes: migratory waterfowl habitat affected
 - Lack of SAV and invasive carp contributing to water quality concerns
- All effects exacerbated by sea level rise
- 2016 state Clean Water Act 303(d) listing for pH and chlorophyll-α

Science & Engineering to the Rescue!

- Partnership for Lake Mattamuskeet Watershed Restoration Plan (LMWRP):
 - Hyde County
 - NC Wildlife Resources Commission
 - U.S. Fish & Wildlife Service
- Developed by NC Coastal Federation for NCDEQ 319 approval
 Focus of
- 3 goals:
 - Protect Hyde Co. way of life
 - Actively manage lake water level
 - Restore water quality and clarity

LAKE MATTAMUSKEET WATERSHED RESTORATION PIAN

Focus of Phase 3

Phase 1 + 2

Lake Mattamuskeet – Project Overview

Phase	Sub-tasks	2020	2021	2022	2023	2024	2025
Phase 1 Active Water Management	 Develop watershed-scale H&H model Alternatives Analysis Additional modeling + cost estimates for two (2) preferred alternatives Progress one (1) alternative to permit level plans and preliminary EIA 						
Phase 2 Outfall Canal Dredging Alternatives	Outfall Canal BathymetryModel UpdatesDredging Alternatives						
Phase 3 Constructed Wetland Design	 Detailed LiDAR topography H&H modeling for constructed stormwater wetlands Draft and Final Design 						■

- Conclusion of Phase 1 of the Active Water Management evaluation resulted in further interest from stakeholders and Hyde County BOC in evaluating options and costs to dredge Outfall Canal in Phase 2
- Interest in progressing water quality initiatives led to progressing other preferred alternatives in Phase 3

Active Water Management Study Goals and Objectives

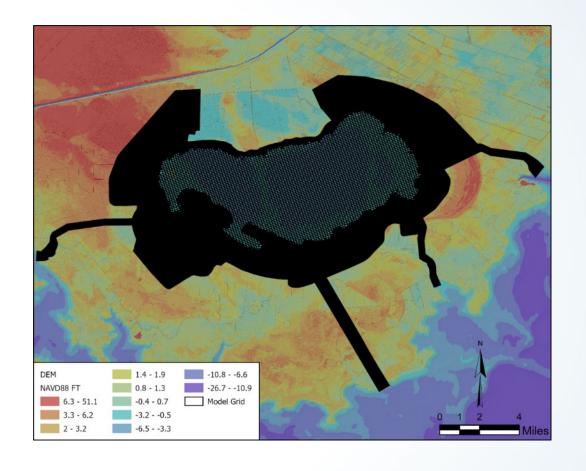
Develop watershed-scale Hydrologic and Hydraulic (H&H) Model

Calibrate model to Hurricanes Matthew and Joaquin

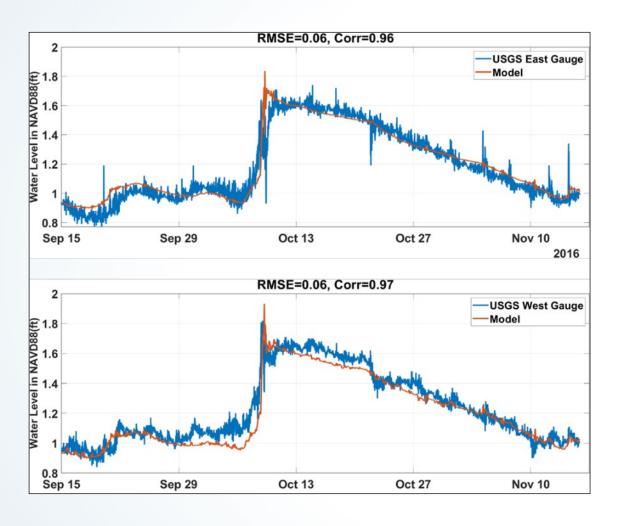
Simulate calibrated model under various design storm scenarios in existing and future sea level rise

Evaluate engineering options to actively manage lake levels during design storms

Progress preferred alternative to permit-level plans

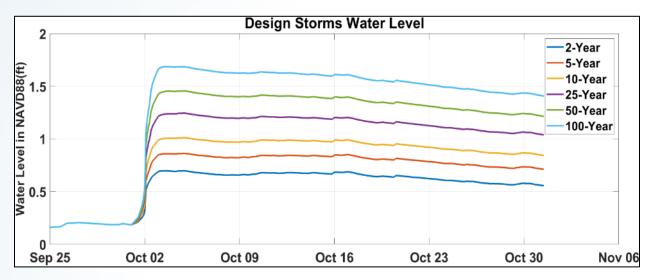

Numerical Modeling Main Objectives

- Determine water levels that result in chronic flooding
- Calibrate to reproduce lake levels during Matthew and Joaquin
- Investigate options for increasing water discharge
- Evaluate impact of sea level rise projections in 2100 on drainage infrastructure
- Selected model: Delft3D Flexible
 Mesh which simulates the
 interaction of water, sediment,
 ecology, and water quality in time
 and space

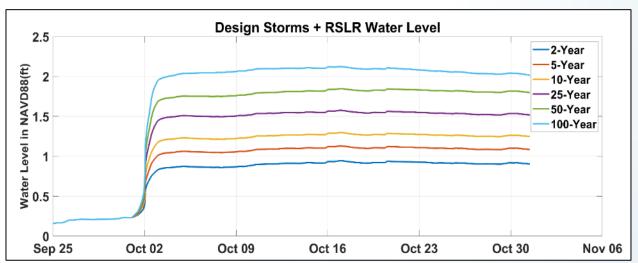


Delft3D FM Lake Mattamuskeet Model Setup

- 300k cells; higher resolution in watershed and canals that link to Pamlico Sound
- Water level data: USGS Lake Stations and Bell Island Pier (Pamlico Sound)
- Precipitation and Evaporation data:
 NOAA NCEP CFSv2 (hourly)
- Topo-bathy data: LiDAR from State Floodplain Mapping Program and locally collected bathymetry
- Gates resolved as gravity structures (open when positive lake/sound gradient)



Lake Mattamuskeet Model Calibration



H&H Model: Existing Conditions and Sea Level Rise

Lake drainage diminished due to SLR effect on canal outflows and gravity gates.

10-year Design Storm Screening

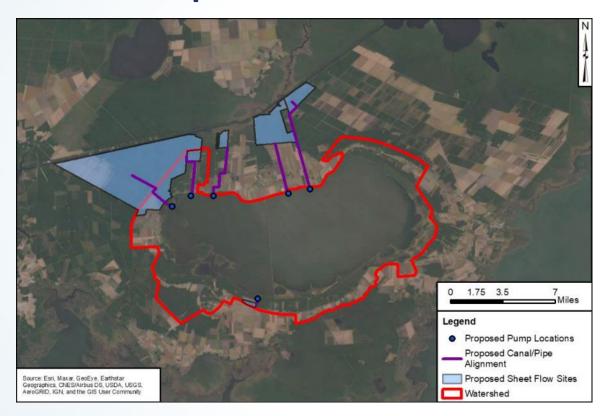
Simulate each alternative under 10-year design storm

- Starting water level of 2.17 ft (October average)
- Soundside boundary condition corresponding to Hurricane Matthew record with storm surge

Evaluate performance metrics

- Peak water level
- No. of days pumping if option includes pumping
- No. of days to return to starting water level OR final lake level at end of simulation

Select two alternatives to perform more detailed simulations


List of Potential Engineered Alternatives

- Mid-sized pump station to drainage districts
- Large pump station to ICW
- Pump station with optimized pumping rate to ICW
- Sheet flow sites
- Dredge existing outlet canals
- Optimized outlet structures
- Dredge canals + optimized outlet structures
- Gravity-drained canals to drainage districts

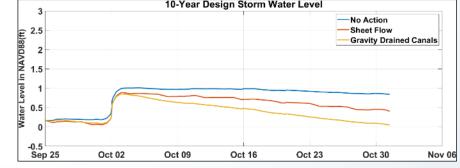
Selected by Hyde County BOC at May 2021 meeting for additional simulations

Alternatives Selected for Additional Simulations + Costs

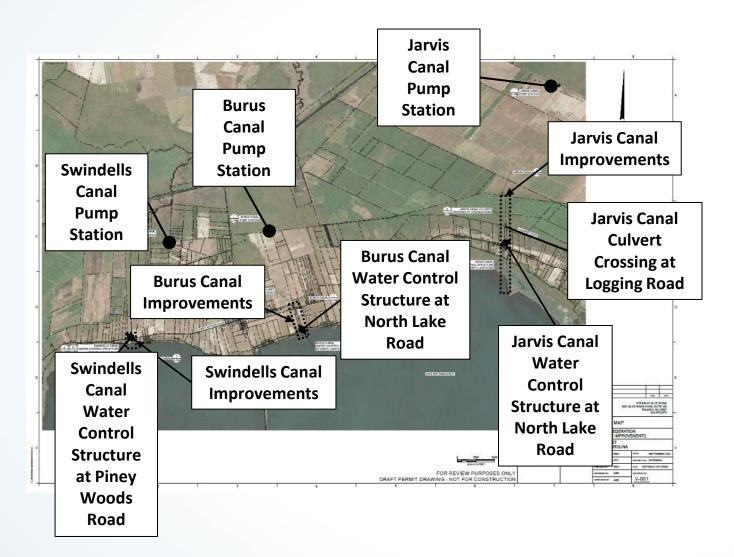
Multiple Sheet Flow Sites

Capital Costs (All Six Sites): \$13MM to \$23MM Annual O&M Costs (All Six Sites): \$2.8MM

Gravity-drained Canals


Capital Costs: \$6.5MM to \$12MM

Annual O&M Costs: \$1.0MM


Comparison of Alternatives: 10-year Design Storm

- Both options decreased time to drawdown, gravity drained canals more effective
- Sheet flow sites estimated to cost \$500+ per acre managed per foot of water level drop during the 10-year storm
- Gravity drained canals estimated to cost \$100 \$200 per acre managed per foot of water level drop during the 10-year storm
- Progressed the gravity drained canals alternative to permit-level plans including Preliminary EIA and Water Management Plan with input

from Hyde County BOC

Preliminary Engineering Design: Site Plan

Canal Improvements

Burus Canal: ~ 3,500 LF

Jarvis Canal: ~ 13,000 LF

Swindells Canal: ~ 800 LF

Water Control Structures

 Series of adjustable weir gates, width based on canal and controlling flow to not exceed pump station capacity

Pump Stations

Three (3) 48" axial flow pumps at each pump station

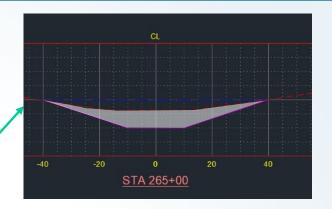
Conclusion of the first phase of the Active Water Management evaluation resulted in further interest from stakeholders and Hyde County BOC in evaluating options and costs to dredge Outfall Canal

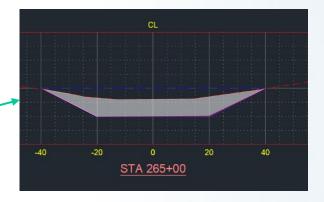
Outfall Canal Bathymetry and Model Updates

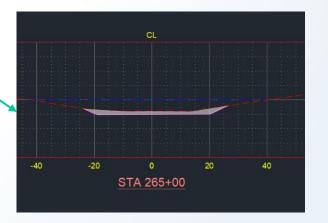
Collection of topography and bathymetry for Outfall Canal

Update Model Simulations with Refined DEM for Outfall Canal

Screen Multiple Dredge Alternatives for Evaluation

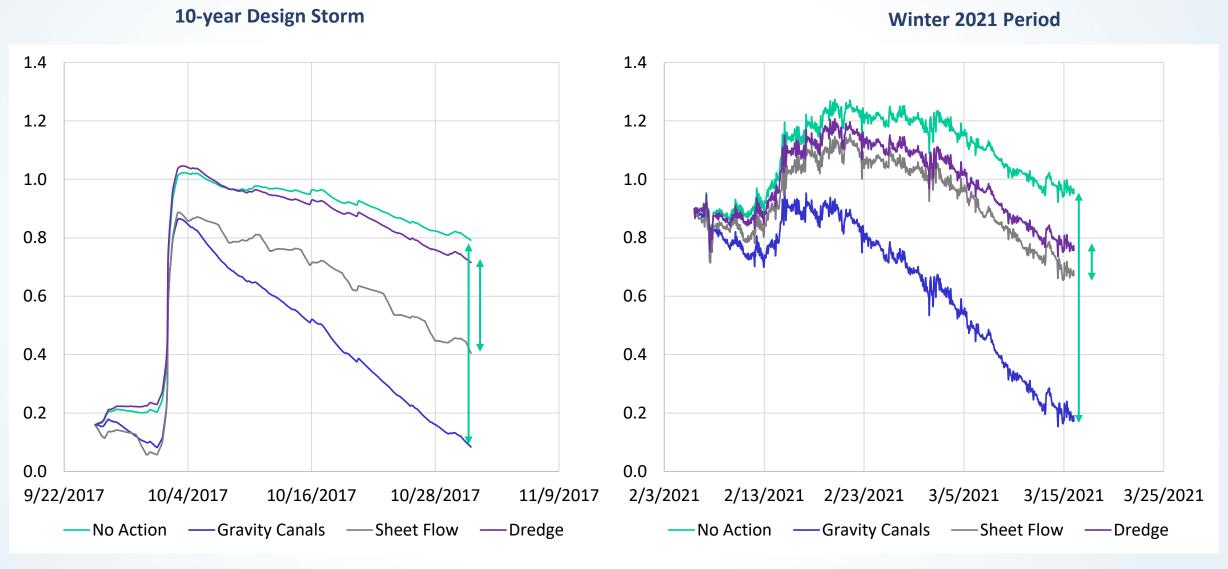

Preliminary Characterization of Outfall Canal Sediment




AACE Class 5 Cost Estimates for Dredging Outfall Canal

Dredging Alternative Screening Scenarios

Scenario	Dredge Depth Below Water Level (ft)	Bottom Width (ft)	Quantity Estimate (cu. yd.)
1 + 2	10	20	565,000
3	10	40	700,000
4	5	40	145,000
5	5/10	Varies	435,000



Screening simulations indicated that despite large variations of dredged material removal, overall performance in lake water level drawdown was between +/- 0.1 ft across the scenarios due to drainage capacity being reduced when the sound water level is higher than the lake water level.

Comparison of Dredging to Gravity-Drained Canals + Sheet Flow

Cost-Benefit Summary – Capital and Annual O&M Costs

	Parameter	No Action	Gravity- Drained Canals	Sheet Flow Sites	Outfall Canal Dredging (Scenario 2)
Capital Costs	Capital Costs	-	\$6.5MM to \$12MM	\$13MM to \$23MM	\$8MM to \$17MM
Costs	Annual Operating and Maintenance Costs (\$)	-	\$1.0MM	\$2.8MM	\$493k
Annual O&M Costs	Annual Additional Drawdown Volume (ac-ft)	-	350,000	220,000	45,000
Annual	Cost per ac-ft of additional water managed (\$/ac-ft)	-	2.9	12.8	11.0

Progressing a combination of all three through various funding resources

- All alternatives improve drawdown compared to existing conditions
- Hydraulic benefit (drawdown and water managed) highest for gravity-drained canals
- Gravity-drained canals are most cost-effective but come with other permitting challenges + higher operational costs – pilot projects and phased approach suggested

Comparison to LMWRP Objectives

Progressing Pat Simmons and Burrus Canal Pilot Projects in

LMWRP Objectives	Gravity-Drained Canals	Sheet Flow Sites	Outfall Canal Dredging	Phase 3 \$10MM awarded to
Protects Hyde County Way of Life			✓	NC Wildlife Resources Commission to be used towards
Manages Lake Water Levels				dredging Outfall Canal
Restores Water Quality and Clarity				

Ongoing design for projects that contain elements of all three alternatives will result in progress towards the goals of the LMWRP

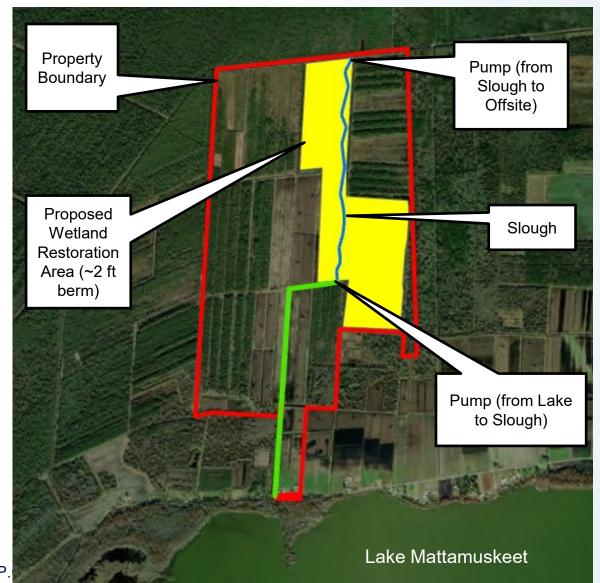
Phase 3: Design of Constructed Wetlands

Pat Simmons Site Layout + Project Components

H&H Modeling Using the Interconnected Pond Routing (ICPR) Model

Engineering Design Considerations

Other Project Considerations

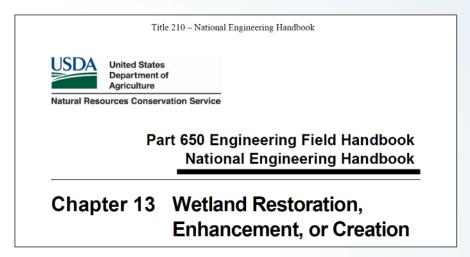


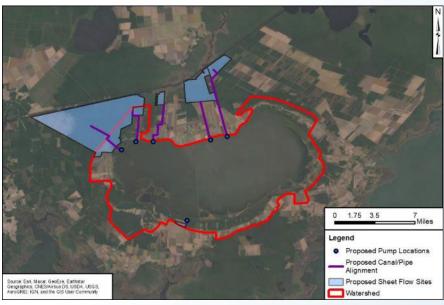
Key Takeaways and Next Steps

Pat Simmons Site Layout + Project Components

Includes Approximately:

- > 1 Pump Station
- > 3 Water Control Structures
- **2** Tide Gates
- > 6,500 LF of Canal Improvements
- > 7,500 LF of Sloughs
- > 36,000 LF of Dike Improvements


H&H Modeling Objectives


Support Design of a Constructed Wetland for the Pat Simmons property following NRCS Guidelines

Select and design water control structure for design storm runoff and water level control

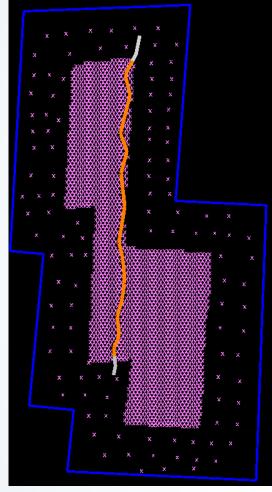
Evaluate hydraulic trespass

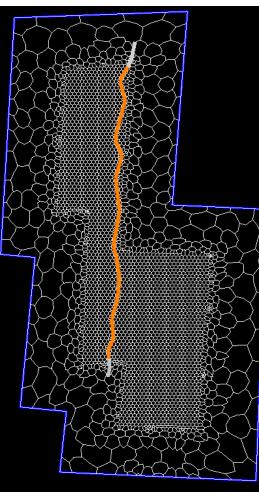
Prepare Monthly Water Budget using continuous simulation model

Engineering Design Considerations

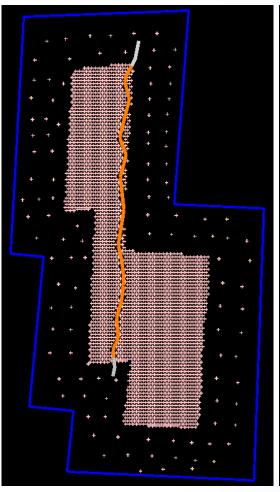
Wetland Reserve Easement (WRE)

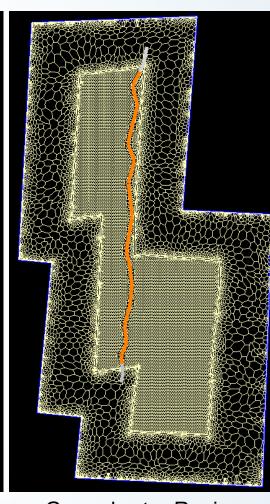
Design Requirements


Conservation Practice (CP)	Standard No.
Wetland Restoration	657
Water Control Structure	587
Dikes	356
Shallow Wetland Area for Wildlife	646


H&H Model Selection: Interconnected Pond Routing Model

Desired Capability	ICPR	HEC-RAS (2D)	PCSWMM (2D)	DRAINMOD	HydroCAD/ PondPack/ Similar Routing Models
Design Storm Simulation	✓	\checkmark	\checkmark	\otimes	
Continuous Simulation	✓	\otimes	✓	✓	\otimes
2D Modeling	\checkmark	\checkmark	\checkmark	\otimes	\otimes
Surface Water and Groundwater Interaction	✓	\otimes	==		\bigotimes
Annual Water Balance	\checkmark	\otimes	\checkmark	✓	\otimes
ET/Infiltration/Pumps	\checkmark		==	✓	\otimes
Robust Graphics	\checkmark	\checkmark	$\overline{\checkmark}$	\otimes	\bigotimes


ICPR Model Set-Up: Grid Network


Overland Region Breakpoints

Overland Region Honeycombs

Groundwater Region Breakpoints

Groundwater Region Honeycombs

Geosyntec Consultants of NC, P.C. | North Carolina Coastal Federation

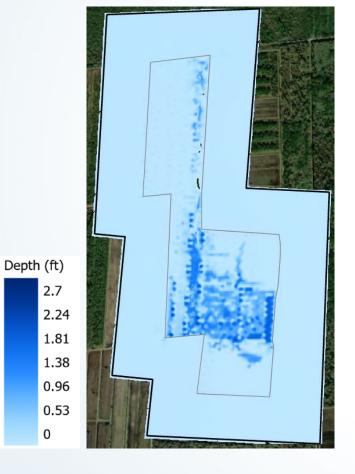
ICPR Model Assumptions: Methods and Data Sources

Parameter/Model Input	Assumption/Data Source
Land Use	100% Pervious
Soil Characteristics	Web Soil Survey
Evapotranspiration	Thornthwaite Method to calculate monthly PET
Rainfall Excess Method	Green-Ampt Loss Model
Overland Flow Module	Represented slough as 1-D channel link
Groundwater Flow Module	Initial water table: - 2.5 ft Confining layer top: - 12.5 ft Clay exclusion around wetland perimeter
Pumping Rate	135 cfs at inlet and outlet; controlled by water surface elevation
Simulation Manager	5-min time step (hydrology + surface hydraulics) 60-min time step (groundwater)
Precipitation	USGS Rain Gage at Lake Mattamuskeet
Design Storm Simulation	10-year, 25-year, and 100-year, 24-hour storms
Continuous Simulation	2015 – 2021

Design Storm Results: Overland Flow and Groundwater Flow

Overland Flow Region

Hour: 12

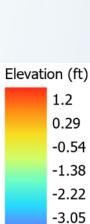

10-year

Groundwater Flow Region

Hour: 36

10-year

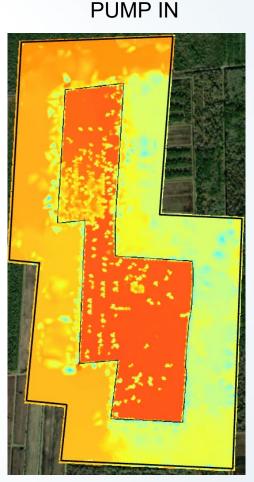
100-year



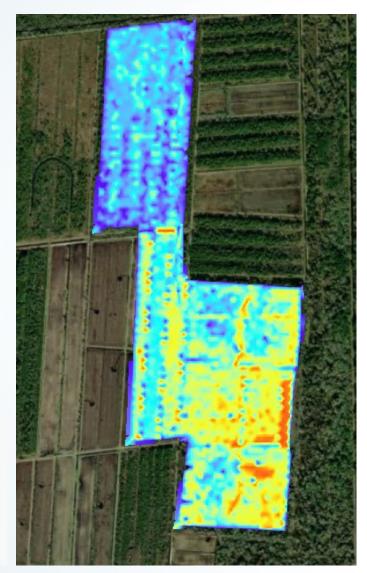
100-year

-3.9

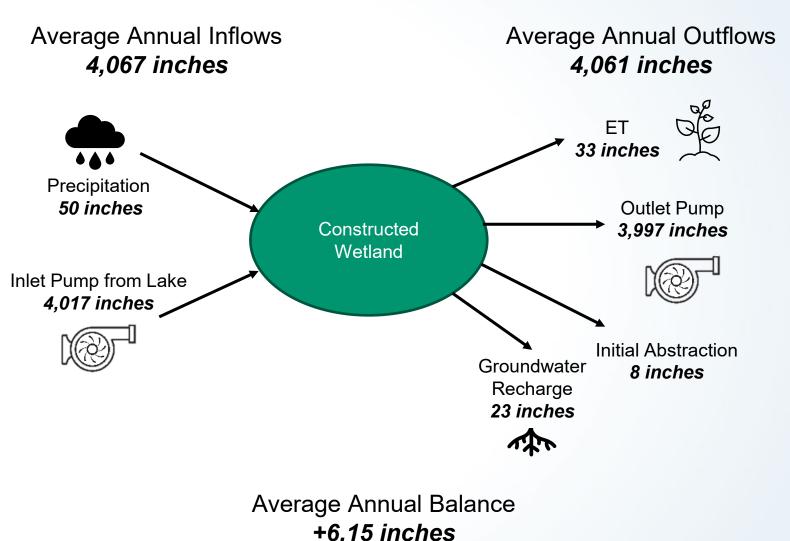
Evaluation of Hydraulic Trespass: Groundwater at Hour 36


10-year 100-year

NO PUMP IN


Elevation (ft)

1.2 0.29 -0.54 -1.38 -2.22 -3.05 -3.9 **PUMP IN**

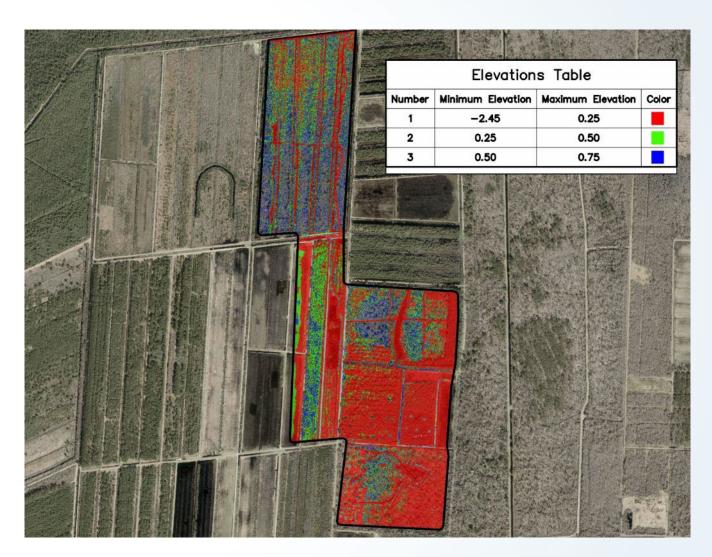

Continuous Simulation with Continuous Pumping

Depth (ft)

2.74

1.37 0.69

Continuous Simulation – Preliminary Monthly Water Balance with Continuous Pumping


	Average Monthly Water Balance (inches)										
Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec
-5.66	+24.25	-8.01	+3.53	-3.44	+0.50	-7.10	-4.96	+4.88	-0.28	+5.54	-3.11

Average Annual Balance +6.15 inches

Volume managed approximately 90,000 ac-ft or 1.5 ft of water drawdown in Lake Mattamuskeet

Other Project Considerations

- Minimum elevation
- Connection to the Lake
- Infiltration
- Ensuring wetland habitat
- Landowner considerations
- Multiple stakeholders
- Hydraulic trespass

Key Takeaways + Next Steps

Design storm runoff appropriately mitigated with 135 cfs pumps

Minimal hydraulic trespass when pumping during design storms

Potential for significant water removal from Lake Mattamuskeet... if continuously pumping to wetland, which has operational challenges

Novel application of ICPR in North Carolina

Progressing design and evaluating funding options

Questions?

Alessa Braswell - abraswell@geosyntec.com Jonathan Hinkle – jonathan.hinkle@bolton-menk.com