High Definition Stream Survey Methods for MS4 Compliance

Everyone wants clean water in their community

Successful plans depend on quality data

Figure 1. The iterative process of stormwater management (Develop, implement, evaluate, repeat).

EPA 833-F-07-010 Evaluating the Effectiveness of Municipal Stormwater Programs

High Definition Stream Survey

HDSS links GPS, Video, Sonar, Water Quality and other sensors to allow Rapid and Accurate Data Collection.

Quality Data Collection

Side video

- Left and Right Streambank
- Riparian
- Infrastructure

Front video

- Habitat type
- Canopy cover

Down video

- Substrate type
- Embeddedness

Side scan sonar

- Depth
- Side scan imagery

Water quality sensor

• DO, pH, Temp, etc

Water Grab Samples

- GPS
 - Time
 - Location
 - Elevations

Versatile Data Collection

Flexible Data Classification

- Riparian
- Streambank
- Streambed
- Discrete features

Two Types of Data

- Continuous Variables
 - Condition and modification type of:
 - Streambed
 - Streambanks
 - Riparian zone

High Definition Stream Survey Methods for a MS4 Stormwater Permit

- Point Variables (Discrete Features)
 - Condition, type, and location of:
 - Outfall
 - Road crossing
 - Pipe
 - Other

Riparian Condition Scoring

Streambank Condition Scoring

Streambed Condition Scoring

Functional

High Definition Stream Survey Methods for a MS4 Stormwater Permit

Front

Non-functional

Discrete Feature Scoring - Outfalls

Minor

Severe

≡►×★₩₽₽₽₽₩₩₽**₽**+→×⊵Q

Identify and Highlight

Stormwater Permit

High Definition Stream Survey Methods for a MS4 Stormwater Permit

Reviewable, Repeatable, QA/QC Severity -1 Severity -3

Stream Segment Combination Rating

200 m Stream Segment Combination Rating

HDSS Enables BMP Cost Estimates: Permitting, Access, Construction

Rehabilitation score =

(BMP Cost+Access Cost+Permit & Ownership) ÷Derived Funtional Uplift

Cost of BMP

Example:

Streambank Planting: Relative Cost: \$\$ Potential Uplift: 2 units

Streambank Grading, Stabilization and Planting: Relative Cost: \$\$\$\$

Cost of Access

Calculate from GIS: (To Stream Centerline at each meter)

- Distance from Nearest Roads
- Topography Change from Road
- Ground Cover from Road
- Wetland % from Road

Combine and Determine a Relative Cost of Access Score

Cost of Permit/Ownership

Calculate from GIS: (To Stream Centerline at each meter)

- T & E impact:
 - # of Threatened species
 - # of Endangered species
- BMP Permits
 - Stream Channel Alteration Permit, etc.
- Ownership
 - # of owners on Left Bank within 100m up and downstream
 - # of owners on Right Bank within 100m up and downstream
- Combine and Determine a Relative Cost of Access Score for each Stream Corridor Component

Cost/Unit Uplift

Summarize:

Cost/Unit Uplift = BMP Total Cost / Uplift

Select actions with the lowest cost per unit uplift.

- Map will show where
- BMP will tell what to do
- Cost will give relative amount
- Cost/Uplift will make sure it is best bag for buck.

High Definition Stream Survey Methods for a MS4 Stormwater Permit

Sediment Contribution from Failing Streambanks

- ≈ 6m difference in stream centerline between 2013 and 2016
- ≈ 200m failing bank length
- \approx 1.2m (4ft) high stream bank

 $6m * 200m * 1.2m = 1440m^3$ or $480m^3$ /yr sediment input

Effective Communication

Easy to Understand Outputs

EPA guidance encourages partnerships

ENVIRONMENTAL SOLUTIONS MORE DATA, HIGHER QUALITY, LOWER COST info@TruttaSolutions.com TruttaSolutions.com