

The Annual Rv Method for Site-Level Green Infrastructure

Andy Reese & Mary Halley

Amec Foster Wheeler Nashville & Knoxville, TN

"Everything should be made as simple as possible, but not simpler"

Albert Einstein

- 1. Average annual runoff ratio (Rv) must hit a target value
- 2. Each land use has an Rv estimated
- 3. Flow thorough natural and structural GIPs reduces the Rv from the combination

Rv=0.20 out

The weighted sum of Rv's for each land use or combination must be less than the target value.

So this ends up looking just like a C Factor or CN calculation on a site:

The land-use weighted Rv must be ≤ 0.20

Brief overview of why and how we derived the method.

...built and maintained to infiltrate, evapotranspire, harvest and/or use... the stormwater runoff generated at a site by the first inch of every rainfall event preceded by 72 hours of no measurable precipitation... no runoff

- If we take this literally we would have to create storage space for 1" rain every time thus reducing natural treatment's value
- Capturing the first inch after 72 HR IEPD would only capture 54% of the rainfall in Nashville
- We felt these were unintended consequences of the language at the time

Do a voluntary program to introduce Green Infrastructure to our community two years ahead of its mandatory use.

Develop an approach that has a high probability of success.

Remember there was no technical guidance at the time.

So...we talked to some smart old friends about lessons learned.

Dr. Rob Traver

Dr. Barrett Kays

Dr. Bob Pitt

Dr. Bill Hunt

A few key ideas:

- Urban soils are very complex and are never mapped use a constant and conservative infiltration rate
- Modeling of individual urban sites is overly complex and highly inaccurate for every day use – you will never have enough data
- Instantaneous pollution is not normally the problem why not use a longer term metric
- In tight soils or bedrock underdrains mimic natural hydrology
- Capture depth requirements can produce overdesign and grey solutions – "Kerplunk" design
- Your method should integrate natural vegetation and processes in a non-artificial way
- Promote natural, low maintenance approaches as a priority

Complicated spreadsheets... No kidding.

Tom Schueler Chesapeake Bay, Center for Watershed Protection and Washington DC Stormwater program

How we think GI gets built

How GI actually gets built

In Summary

- We can be smarter than we are wise
- You would be far better off creating a framework that:
 - realistically reflects the urban facts on the ground
 - Balances hydrologic mimicry and an ability to capture and treat about the right volume
 - relatively easy to use given the experience and skills of the common user

Right – so you're saying if all my developers can do continuous simulation then I can use this method?

And that is simpler how again?

1" Storm Volume Captured: 80%

Capture Depth (inches)

Green Infrastructure Bioretention Runoff Volume Reduction Effectiveness

amec foster wheeler

- A 1" storm is about 80% average annual volume capture
- C Soil with turf and some trees is about 80% average annual volume capture
- That is my back yard & streams in these areas are fairly stable and healthy
- GIPs can attain this 80% capture if appropriately sized to recognize underperformance rates
- ERGO: Rv ≤ 0.2 is the single criterion we need and can encompass all these things

If I can design a site with an <u>average annual</u> <u>runoff</u> of 20% I will <u>both</u> capture about an inch from all impervious area <u>and</u> mimic an acceptable urban hydrology looking like the typical Nashville back yard.

So if I can reliably assign annual Rv numbers to land uses and treatments (Rv out), insure conservatism, and close any technical loopholes I am there.

Evap

Infil

4420

Use

R.O.

Infil

A three-step process to mimic nature

Rainfall

Runoff

- Derivation across the state
- Controls in series
- Use with the 80% TSS approach
- Reduced CN for flood control
- Maximum size of IA before mandatory structural treatment (the golf course problem)
- Minimum distance from streams before mandatory structural treatment

Step 1 Basic Land Use		CODE	Memphis	Nashville	Chattanooga	Knoxville	Tri-Cities
Target	0.24	0.20	0.20	0.14	0.10		
	Impervious Surface	IA	0.95	0.95	0.95	0.93	0.90
	Forest A Soil	FA	0.02	0.02	0.02	0.01	0.01
	Forest B Soil	FB	0.04	0.03	0.03	0.02	0.02
	Forest C Soil	FC	0.05	0.04	0.04	0.03	0.02
Basic Land Use	Forest D Soil	FD	0.06	0.05	0.05	0.04	0.03
	Turf A Soil	TA	0.18	0.15	0.15	0.11	0.08
	Turf B Soil	TB	0.22	0.18	0.18	0.13	0.09
	Turf C Soil	TC	0.24	0.20	0.20	0.14	0.10
	Turf D Soil	TD	0.28	0.23	0.23	0.16	0.13

ler

Table 3. Modified Land Uses

Step 1a Modified Land Use		CODE	Memphis	Nashville	Chattanooga	Knoxville	Tri-Cities
	A	AA	0.03	0.03	0.03	0.02	0.01
Netural as Amanded Sail	В	AB	0.10	0.08	0.08	0.05	0.04
Natural of Amended Soli	С	AC	0.16	0.13	0.13	0.09	0.07
	D	AD	0.28	0.23	0.23	0.16	0.13
5	A	UA	0.12	0.10	0.10	0.07	0.05
Linkson Council	В	UB	0.14	0.12	0.12	0.08	0.06
Urban Forest	С	UC	0.16	0.13	0.13	0.09	0.07
	D	UD	0.19	0.16	0.16	0.11	0.08
	A	RA	0.12	0.10	0.10	0.07	0.05
	В	RB	0.14	0.12	0.12	0.08	0.06
l l	С	RC	0.16	0.13	0.13	0.09	0.07
Defensetation	D	RD	0.192	0.16	0.16	0.112	0.08
Reforestation	A Amended	RAA	0.02	0.02	0.02	0.01	0.01
	B Amended	RBA	0.04	0.03	0.03	0.02	0.02
	C Amended	RCA	0.05	0.04	0.04	0.03	0.02
	D Amended	RDA	0.06	0.05	0.05	0.04	0.03
Grann Basel	Level 1	G1	0.24	0.20	0.20	0.14	0.10
Green Roof	Level 2	G2	0.12	0.10	0.10	0.07	0.05

Step 2 Intrinsic RRPs		CODE	Memphis	Nashville	Chattanooga	Knoxville	Tri-Cities
	A/B Soil	DAB	0.60	0.50	0.50	0.35	0.25
Downspout Disconnection	C/D Soil	DCD	0.84	0.75	0.75	0.53	0.38
	Amended	DAS	0.60	0.50	0.50	0.35	0.25
	Cons Area A/B	SAB	0.30	0.25	0.25	0.18	0.13
Sheet Flow	Cons Area C/D	SCD	0.60	0.50	0.50	0.35	0.25
Sheet Flow	Strip A	SA	0.60	0.50	0.50	0.35	0.25
	Strip Amended	SAS	0.60	0.50	0.50	0.35	0.25
Step 3 & 3a Structural RRPs		CODE	Memphis	Nashville	Chattanooga	Knoxville	Tri-Cities
Dermachie Dermant	Level 1	P1	0.66	0.55	0.55	0.39	0.28
Permeable Pavement	Level 2	P2	0.30	0.25	0.25	0.18	0.13
	A/B Soil	GAB	0.88	0.80	0.80	0.56	0.40
Crease Channel	C/D Soil	GCD	0.91	0.90	0.90	0.63	0.45
Grass Channel	A/B Amended	GAA	0.81	0.70	0.70	0.49	0.35
	C/D amended	GCA	0.88	0.80	0.80	0.56	0.40
Rierantantian / Rain Cardan	Level 1	B1	0.48	0.40	0.40	0.28	0.20
Biorentention/ Rain Garden	Level 2	B2	0.24	0.20	0.20	0.14	0.10
Matas Quality Swalas	Level 1	S1	0.70	0.60	0.60	0.42	0.30
water Quality Swales	Level 2	S2	0.48	0.40	0.40	0.28	0.20
Infiltration Tranch	Level 1	11	0.60	0.50	0.50	0.35	0.25
inilitation Trench	Level 2	12	0.12	0.1	0.1	0.07	0.05
Urb Bioretention		UB	0.48	0.40	0.40	0.28	0.20
Dry Pond		D1	0.90	0.85	0.85	0.60	0.43
Cistern		CIS	Des. Dep.	Des. Dep.	Des. Dep.	Des. Dep.	Des. Dep

Simple Spreadsheet Calcs

Percent	Volume	Reduc	tion-Bas	sed Calo	ulation	s															
Step 1: La sub-areas	ay out the s each of a s and	ite and div pecific lan Rv.	ide it into id use type	Step 1a: (use types green roo oper	Change any through refe ofs - or thro n space for a	basic land oresting or ugh use of a GIP.	Step 2: T through th	reat impervi le use of dis or sheet flo	ous areas connection w	Step 3: Treat primarily impervio areas with structural GIPs either series with Step 3 intrinsic GIPs alone downstream from Steps and 2 land use.		ily impervious IGIPs either in trinsic GIPs or from Steps 1 use. Size controls for Step 3 structure ID to each sub-r sub-areas into one s appropriati		Is for Step 3 by assigning) each sub-area, combining is into one structure if appropriate.		Step 3a Treatment in Series Galculation - Place Structural GIP in same row as upstream GIP		Size controls for Step 3. assigning a sequential st each area treated ir		3a in series by structure ID to in series.	
S	tep1 Basic	Land Us	e	Step	1a Modifi	ed LU	Step	2 Intrinsia	GIPs	Step	3 Structur	al GIPs	Structure ID	IA C	apture	Step 3a	Structura Series	l GIPs in	Structure ID	IA C	apture
Subarea	Code	Acres	Base Rv	Code	Acres	Eff Rv1	Code	Trtmt VB1	Eff Rv2	Code	Trtmt VB2	Eff Rv3		Tv Multiplier	Tv (cf)	Code	Trtmt VB2	Eff Rv4		Tv Multiplier	Structure in Series Tv (of
1	IA	0.5	0.95	IA	0.5	0.95	SCD	0.5	0.48	B1	0.6	0.19		1.00			0	0.19		0.00	
2	IA	0.4	0.95	RC	0.4	0.08		0	0.08	B1	0.6	0.04		1.00	-		0	0.04		0.00	
3	IA	0.3	0.95	IA	0.3	0.95	SCD	0.5	0.48	B1	0.6	0.19		1.00	-		0	0.19		0.00	
4	IA	0.2	0.95	IA	0.2	0.95		0	0.95	GCD	0.1	0.86		0.00			0	0.86		0.00	
5			0.00		0	0.00		0	0.00		0	0.00		0.00			0	0.00		0.00	
6			0.00		0	0.00		0	0.00		0	0.00		0.00	-		0	0.00		0.00	
7			0.00		0	0.00		0	0.00		0	0.00		0.00			0	0.00		0.00	
8			0.00		0	0.00		0	0.00		0	0.00		0.00			0	0.00		0.00	
9			0.00		0	0.00		0	0.00		0	0.00		0.00			0	0.00		0.00	<u> </u>
10			0.00		0	0.00		0	0.00		0	0.00		0.00	-		0	0.00		0.00	· ·
11			0.00		0	0.00		0	0.00		0	0.00		0.00			0	0.00		0.00	· ·
12			0.00		0	0.00		0	0.00		0	0.00		0.00	-		0	0.00		0.00	· ·
13			0.00		0	0.00		0	0.00		0	0.00		0.00	-		0	0.00		0.00	· ·
14			0.00		0	0.00		0	0.00		0	0.00		0.00	-		0	0.00		0.00	· ·
10			0.00		0	0.00		0	0.00		0	0.00		0.00	-		0	0.00		0.00	· ·
16			0.00		0	0.00		0	0.00		0	0.00		0.00	•		0	0.00		0.00	
18			0.00		ů	0.00		0	0.00		0	0.00		0.00			0	0.00		0.00	
19			0.00		0	0.00		0 0	0.00		0	0.00		0.00			0	0.00		0.00	
20			0.00		0	0.00		0	0.00		0	0.00		0.00			0	0.00		0.00	
	Weighted F	Ru	0.95	Weighted P	Ru	0 701	Weighted 8	Bu	0.430	Weighted	Bu	0.243		a				0.243			
	Total Area	1.4	1.33	Total Area	1.4	0.98		-	0.60	areigineed	<u>.</u>	0.34		Step 5 Tv Total	0			0.34		Final Tv Total	0
% Remo	oval (Goal≥8	30%]>	5.0%	% Remova	al	29.9%	% Remova	al	57.0%	% Remov	al	75.7%				% Remova	al	75.7%			
												THIS MUS	T BE 80% OR	GREATER				THIS MUST	BE 80% OR	GREATER	
												IT VILL TUBN GREEN VHEN IT IS IT VILL TUBN GREEN VHEN IT IS									

40% Impervious DCIA

C Soil + 40% DCIA

Rainfall (in)

Steps to "Mimic Nature"

Meeting the Standard by Example

- Site Area = 1 Acre
- **Urban Setting**
- Building Footprint = 26%
- Total Impervious = 86%
 - Goal: Site composite of Rv = 0.2

Calculate Site Weighted Rv

Impervious = 0.86 Acres
Turf C Soil = 0.14 Acres

Soil Condition	Volumetric Runoff Coefficient (Rv)							
Impervious Cover	0.95							
Hydrologic Soil Group	Α	В	С	D				
Forest Cover	0.02	0.03	0.04	0.05				
Turf	0.15	0.18	0.20	0.23				

Rv =[(0.86Ac)(0.95)+(0.14Ac)(0.2)] 1Ac Rv = 0.85 >>0.2

Structural Practices

- Permeable Concrete (0.1 Ac)
 - **Bioretention (0.64 Ac)**
- Green Roof (0.12 Ac) Turf C Soil (0.14 Ac)

```
Rv= (0.1Ac*0.24)+
(0.64Ac*0.19) +
(0.12Ac*0.2) +
(0.14Ac*0.2)/
1Ac
```

Rv = 0.198 < 0.2

Some potential advantages

- It is simple to understand and little harder than a "C" Factor calculation
- It balances data, experience, and continuous modeling
- It's three steps value natural treatment approaches first

- It is derived for an area and thus does not force a one-sizefits-all criteria
- It integrates natural vegetation without a logic break
 It is appropriately
 - conservative where real-world failure rates are known

- About 80 sites generally successful
- Staff is in favor of the approach and feels it promotes its objectives and priorities
- About 25% of developers choose this approach over the older TSS approach
- It will become mandatory as the first line of water quality treatment next year

Questions?

Mary Halley <u>mary.halley@amecfw.com</u> Andy Reese <u>andrew.reese@amecfw.com</u>